<u>27.33.1</u> Код ОКПД 2

8536 90 100 0 Код ТН ВЭД ТС

EAC Ex

КОРОБКИ КЛЕММНЫЕ ВЗРЫВОЗАЩИЩЕННЫЕ ККВ

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ЦКЛГ.685631.000 РЭ

Содержание

	Введение	3
1	Назначение	3
2	Технические характеристики	6
3	Состав изделия	16
4	Устройство и работа	17
5	Обеспечение взрывозащищенности	22
6	Указание мер безопасности	23
7	Монтаж и подготовка к работе. Обеспечение взрывозащищенности при	
МОН	НТАЖЕ И ЭКСПЛУАТАЦИИ	24
8	Маркировка	27
9	Тара и упаковка	28
10	ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ	28
ПРІ	ИПОЖЕНИЕ Д - ГАБАРИТНО - МОНТАЖНЫЕ ЧЕРТЕЖИ ИСПОПНЕНИЙ ККВ	20

Настоящее руководство по эксплуатации ЦКЛГ.685631.000 РЭ (в дальней-шем - ЦКЛГ.685631.000 РЭ) предназначено для изучения конструкции коробок клеммных взрывозащищенных ККВ, обеспечения правильной и безопасной их эксплуатации в течение всего срока службы.

Уровень подготовки обслуживающего персонала - слесарь КИП и A не ниже третьего разряда.

ЦКЛГ.685631.000 РЭ распространяется на исполнения ККВ, приведенные в таблице 2.1.

1 Назначение

- 1.1 Коробки клеммные взрывозащищенные ККВ (далее ККВ) предназначены для размещения клеммных колодок в случае необходимости монтажа их во взрыво-опасных зонах.
- 1.2 ККВ соответствуют техническому регламенту "О безопасности оборудования для работы во взрывоопасных средах" (ТР ТС 012/2011).
- 1.3 Область применения взрывоопасные зоны помещений и наружных установок, в том числе опасные по газу или пыли, согласно маркировке взрывозащиты.
- 1.4 ККВ выполнены во взрывозащищенном исполнении. Уровень взрывозащиты "взрывобезопасный", вид взрывозащиты "взрывонепроницаемая оболочка" по ГОСТ IEC 60079-1-2011, маркировка взрывозащиты 1Ex d IIB T4 Gb по ГОСТ 31610.0-2019 (IEC 60079-0:2017).

Взрывозащищенное исполнение ККВ обеспечивается за счет заключения токоведущих цепей в корпус взрывозащищенный универсальный типа КВУ-05 ЦКЛГ.301129.000 ТУ, применением сертифицированных взрывозащищенных кабельных вводов с видом взрывозащиты "взрывонепроницаемая оболочка" и маркировкой взрывозащиты 1Ex d IIC Gb.

1.5 Монтаж ККВ и подвод кабеля к ним во взрывоопасных зонах помещений и наружных установок должны производиться согласно маркировке взрывозащиты, ЦКЛГ.685631.000 РЭ, в строгом соответствии с нормативными документами, регламентирующими применение электрооборудования во взрывоопасных зонах.

- 1.6 Вид климатического исполнения ККВ УХЛ1.1 по ГОСТ 15150-69.
- Условия эксплуатации:
- температура окружающего воздуха − от минус 60 до плюс 60 °C;
- относительная влажность воздуха 95 % при 35 °С и более низких температурах без конденсации влаги.
- вибрационные воздействия в диапазоне частот от 10 до 55 Гц с амплитудой смещения 0,35 мм.
 - 1.7 Шифр исполнений ККВ при заказе формируется, как показано на рисунке 1.1.

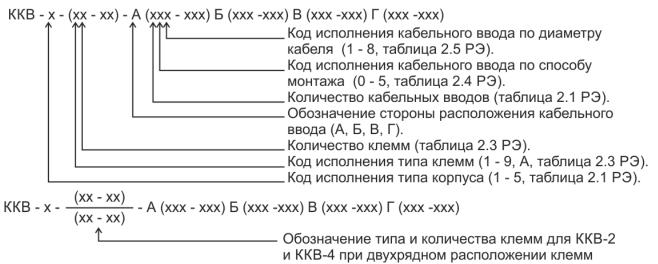


Рисунок 1.1 - Шифр исполнений ККВ

После выбора исполнения кабельного ввода дополнительно необходимо указать:

- 1 Для КВВ-1 обозначение присоединительной резьбы к трубе.
- 2 Для КВВ-2 значение диаметра кабеля после разделки брони.
- 3 Для КВВ-3, КВВ-5 обозначение типа и $Д_{v}$ металлорукава.
- 1.8 Примеры записи ККВ при заказе:
- 1.8.1 Клеммная коробка исполнения ККВ-1 с клеммами UK2,5N 15 шт., с одним кабельным вводом КВВ-3-1 для монтажа кабеля диаметром 18 мм в металлорукаве на стороне А и двумя кабельными вводами КВВ-2-1 для монтажа бронированного кабеля диаметром 14 мм на стороне В при заказе обозначается следующим образом:

1.8.2 Клеммная коробка исполнения ККВ-2 с клеммами UK5N - 27 шт., с двумя кабельными вводами КВВ-1-1 для монтажа кабеля диаметром 24 мм в трубе на стороне А и двумя кабельными вводами КВВ-2-1 для монтажа бронированного кабеля диамет-

ККВ-1-115-А135-В224 ЦКЛГ.685631.000.

ром 14 мм и двумя кабельными вводами КВВ-3-1 для монтажа кабеля диаметром 12 мм в металлорукаве на стороне В при заказе обозначается следующим образом: ККВ-2-227-A217-B(224-234) ЦКЛГ.685631.000-01.

1.8.3 Клеммная коробка исполнения ККВ-2 с клеммами UDK3 - 32 шт., с четырьмя кабельными вводами КВВ-3-1 для монтажа кабеля диаметром 12 мм в металлорукаве на стороне А, двумя кабельными вводами КВВ-3-1 для монтажа кабеля диаметром 9 мм в металлорукаве на стороне Б, шестью кабельными вводами КВВ-3-1 для монтажа кабеля диаметром 9 мм в металлорукаве на стороне В и двумя заглушенными отверстиями M20x1,5 на стороне Г при заказе обозначается следующим образом: ККВ-2-632-A433-Б232-B632-Г203 ЦКЛГ.685631.000-01.

1.8.4 Клеммная коробка исполнения ККВ-2 с клеммами UK5N по 20 шт. при двухрядном расположении, с четырьмя кабельными вводами КВВ-3-1 для монтажа кабеля диаметром 12 мм в металлорукаве на стороне А, шестью кабельными вводами КВВ-3-1 для монтажа кабеля диаметром 9 мм в металлорукаве на стороне В при заказе обозначается следующим образом:

ККВ-2-
$$\frac{220}{220}$$
-A433-B632 ЦКЛГ.685631.000-01.

1.8.5 Клеммная коробка исполнения ККВ-3 с клеммами UK2,5N - 10 шт. и заземляющей клеммой USLKG 2,5N – 1 шт., с одним кабельным вводом КВВ-3-1 для монтажа кабеля диаметром 11 мм в металлорукаве на стороне А и двумя кабельными вводами КВВ-3-1 для монтажа кабеля диаметром 9 мм в металлорукаве на стороне В при заказе обозначается следующим образом:

ККВ-3-(110-51)-А133-В232 ЦКЛГ.685631.000-02.

2 Технические характеристики

2.1 ККВ выпускаются в исполнениях, приведенных в таблице 2.1.

Таблица 2.1


Обозначение	Шифр	Тип	Максимальное	Конструктивные
исполнения	исполне-	корпуса	количество	особенности
	ния		кабельных	
			вводов	
			на одной	
			стороне	
ЦКЛГ.685631.000	KKB-1	КВУ-05	А, В – 4; Б, Г - 3	DIN-рейка типа NS-35/7,5
ЦКЛГ.685631.000-01	KKB-2	КВУ-05-01	А, В - 6; Б, Г - 3	DIN-рейка типа NS-35/7,5
ЦКЛГ.685631.000-02	ККВ-3	КВУ-05-02	А, В – 2; Б, Г - 1	DIN-рейка типа NS-35/7,5
ЦКЛГ.685631.000-03	KKB-4	КВУ-05-03	А, Б, В, Г - 25	Монтажная панель
ЦКЛГ.685631.000-04	KKB-5	КВУ-05-06	А, Б, В, Г - 10	Монтажная панель или DIN-рейка типа NS-35/7,5

Примечания:

- 1 Исполнения ККВ отличаются размером применяемого корпуса КВУ-05, количеством и типом клемм, количеством, расположением и типом кабельных вводов, выбираемых при заказе.
- 2 Ограничения в таблице 2.1 по количеству кабельных вводов справедливо для присоединительной резьбы М12, М16 и М20, в остальных случаях количество устанавливаемых вводов согласовывается дополнительно.

2.2 Габаритные размеры и массы исполнений ККВ приведены в таблице 2.2. Таблица 2.2

Шифр	Габаритные размеры,	Габаритные размеры	Macca,
исполнения	B×L×H, мм,	с кабельными вводами,	кг,
	не более	$B_1 \times L_1 \times H_1$, MM,	не более
		(справочные)	
KKB-1	217×221×102	350×350×114	4,5
KKB-2	217×322×102	350×390×102	6,5
KKB-3	127×139×77	291×303×89	1,5
KKB-4	460×495×280	620×620×340	43,0
KKB-5	360×390×224	436×461×224	25,0

2.3 Стороны расположения кабельных вводов и зоны установки клемм для исполнений ККВ приведены на рисунках 2.1 – 2.6.

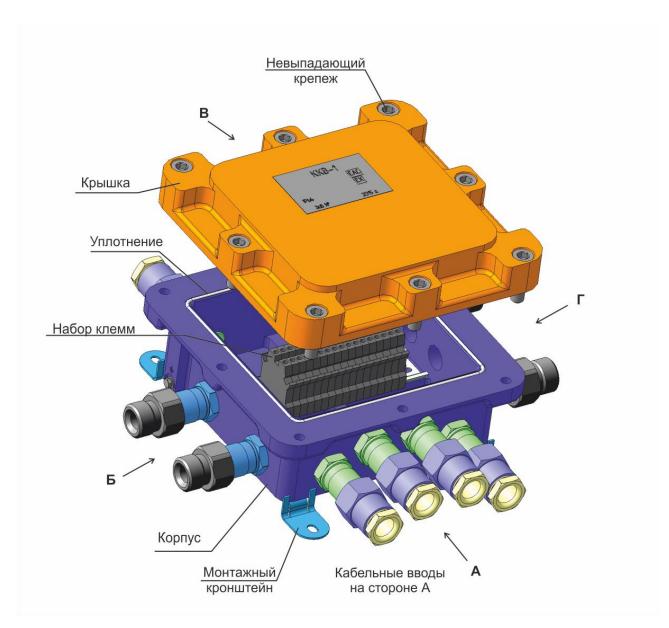


Рисунок 2.1 – Конструкция ККВ-1

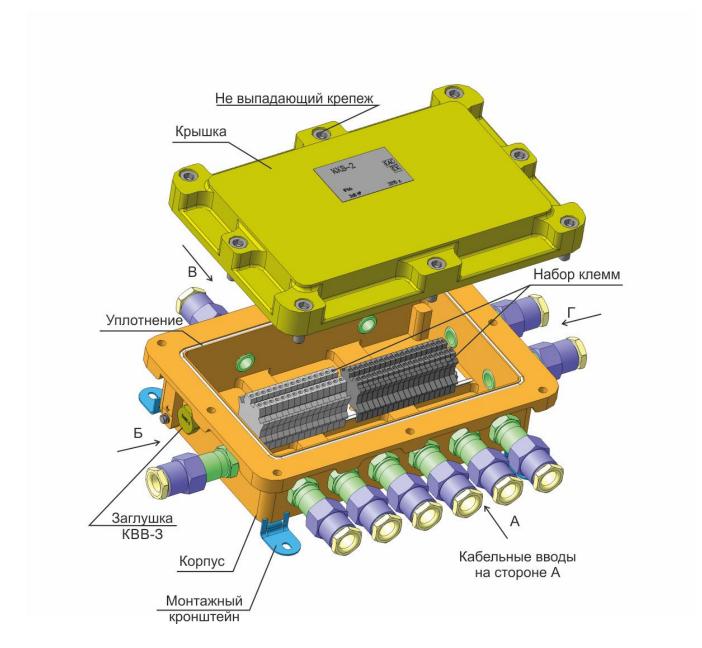
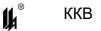



Рисунок 2.2 – Конструкция ККВ-2

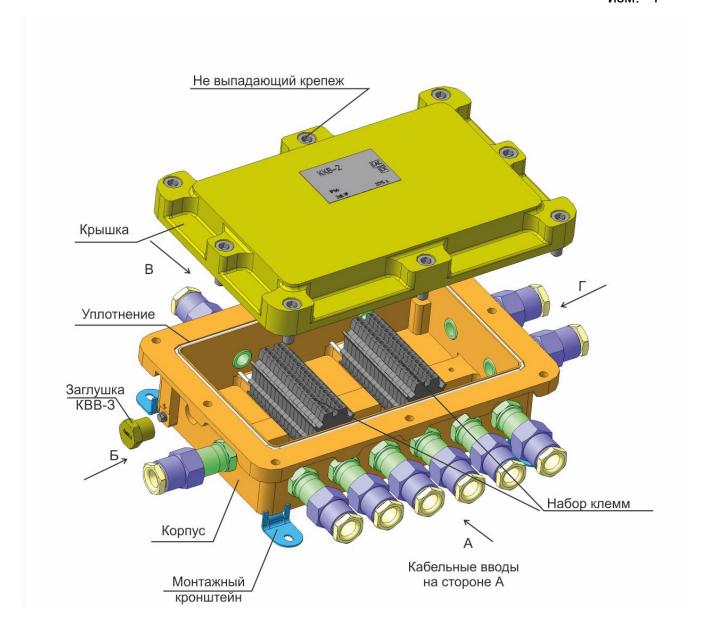


Рисунок 2.3 – Конструкция ККВ-2 (двухрядное расположение клемм)

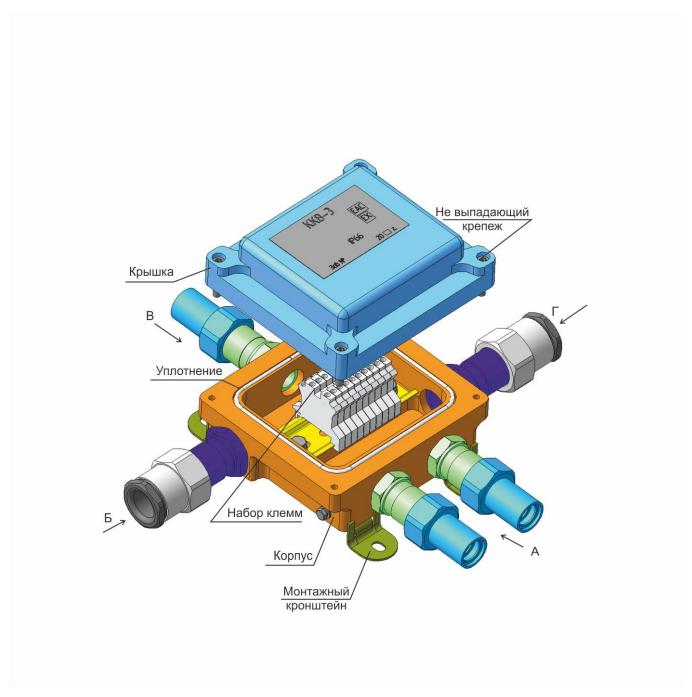



Рисунок 2.4 – Конструкция ККВ-3

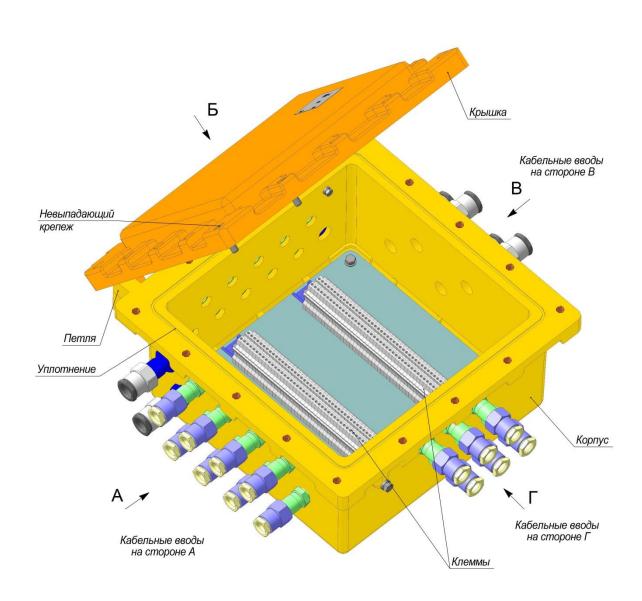


Рисунок 2.5 – Конструкция ККВ-4

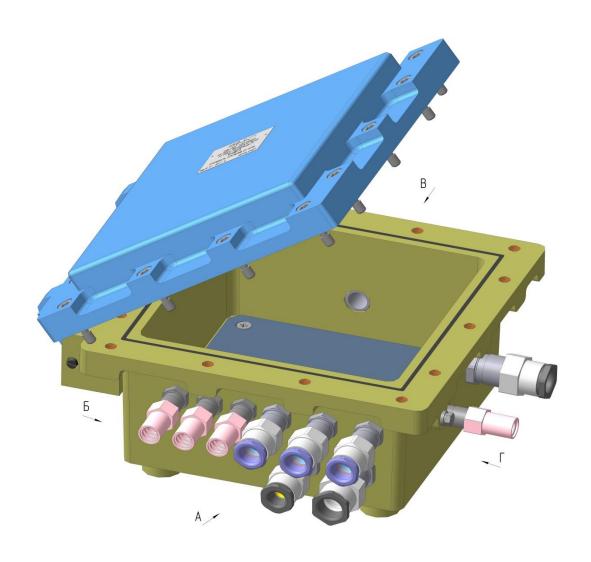
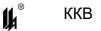



Рисунок 2.6 – Конструкция ККВ-5

2.4 Обозначения исполнений клемм приведены в таблице 2.3.

Таблица 2.3

Код	Тип	Сечение	Макси-	Макси-	Максимальное	Примечание
испол-	конструкции	жил при-	мальное	мальный	количество	
нения	клемм	соединяе-	подводи-	ток	клемм	
клемм		МОГО	мое	на один	(KKB-3/KKB-1/	
		кабеля,	напряже-	контакт,	/KKB-2)	
		MM ²	ние, В	Α		
1	UK 2,5N	0,2-2,5	550	22	17/28/40	-
2	UK 5N	0,2 – 4,0	690	32	12/25/33	-
3	MBKKB 2,5	0,2-2,5	275	22	17/28/40	Контакты в
3	MIDKKD 2,5				17/20/40	двух уровнях
4	UKK 5	0.2 - 4.0	500	32	12/25/33	Контакты в
7	OIXIX 3	0,2 - 4,0	300	32	12/23/33	двух уровнях
5	USLKG 2,5N	0.2 - 2.5	_	_	17/28/40	Заземляю-
<u> </u>	00LI(0 2,5IV	0,2 - 2,3	_		17720/40	щий контакт
6	UDK3	0.2 - 4.0	500	32	17/28/40	Контакты
		, ,	300	32		дублированы
7	UK16N	0,4 - 16,0	690	57	8/12/17	-
8	UK6N	0,2-6,0	690	43	12/18/26	-
9	LIKKS	0.2 4.0	500	32	17/28/40	Контакты в
9	UKK3	0,2-4,0	500	32	17/20/40	двух уровнях
Α	UDK4	0.2 - 4.0	630	32	12/25/33	Контакты
_ ^	ODI(4	0,2 - 4,0	000	52	12/23/33	дублированы

Примечания:

- 1 Тип установленных клемм может отличаться от указанных в таблице 2.3 клемм фирмы PHOENIX CONTACT, в этом случае тип клемм и параметры подключаемого кабеля уточняются при заказе.
 - 2 Вариант установки и тип клемм для ККВ-4 оговаривается при заказе.
- 3 В комплект поставки ККВ могут быть включены дополнительные монтажные элементы, поставляемые фирмой PHOENIX CONTACT для оборудования клемм:
 - концевые панели для организации нескольких групп клемм;
- изолирующая панель для выполнения повышенной электроизоляции между соседними клеммами в составе одной группы (для клемм UK);
 - замыкающие контакты на 2, 3 и 10 позиций;
- замыкающие контакты для организации электрической связи между разнесенными клеммами.

При установке дополнительных концевых и изолирующих панелей общее число установленных клемм будет меньше, указанного в таблице 2.3.

2.5 Обозначения исполнений кабельного ввода по способу монтажа кабеля приведены в таблице 2.4.

Таблица 2.4

Обозначение	Код исполнения	Шифр	Способ монтажа кабеля
исполнений	кабельного ввода	кабельного	
кабельного ввода	по способу монтажа	ввода	
ЦКЛГ.713721.004	0	КВВ-3	Заглушка (без установки
ДЮП .7 13721.004	U	KDD-3	кабельного ввода)
ЦКЛГ.687151.000	1	KBB-1-1	Электромонтаж кабеля в трубе
ЦКЛГ.687151.000-02	2	KBB-2-1	Электромонтаж бронированно-
цкл .007 131.000-02	2	NDD-Z-1	го кабеля
ЦКЛГ.687151.000-04	3	KBB-3-1	Электромонтаж кабеля в
ДЮП .087 131.000-04	3	KDD-3-1	металлорукаве
ЦКЛГ.687151.000-06	1	KBB-4-1	Электромонтаж кабеля без
ДЮП .087 131.000-00	4	NDD-4-1	дополнительной оболочки
ЦКЛГ.687151.000-08	5	KBB-5-1	Электромонтаж кабеля в ме-
цкл007 131.000-06	3	1-6-001	таллорукаве с ПВХ оболочкой

П р и м е ч а н и е — Для исполнений КВВ-5 условный проход меньше на 4 мм относительно Ду металлорукава

2.6 Обозначения исполнений кабельного ввода по диаметру кабеля, вводимого во взрывонепроницаемую оболочку клеммной коробки, приведены в таблице 2.5.

Таблица 2.5

Код исполнения кабельного ввода по диаметру кабеля	Минимальный и максимальный диаметр уплотняемого кабеля, мм	Обозначение присоединительной резьбы (справочное)
1	5 - 8	M16×1,5
2	7 - 10	M16×1,5
3	9 - 13	M20×1,5
4	12 - 16	M24×1,5
5	15 - 20	M27×1,5
6	19 - 24	M33×1,5
7	23 - 28	M39×1,5
8	27 - 32	M39×1,5

П р и м е ч а н и е – При использовании кабельных вводов типа КВВ-2-1 внутрь оболочки клеммной коробки вводится кабель после разделки брони

- 2.7 Взрывонепроницаемая оболочка ККВ выдерживает воздействие испытательного давления не менее 2,43 МПа в течение (10 + 2) с по ГОСТ IEC 60079-1-2011.
- 2.8 Степень защиты от внешних воздействий, обеспечиваемая оболочкой ККВ, IP66 по ГОСТ 14254-2015.

- 2.9 Изоляция электрических цепей ККВ относительно корпуса согласно ГОСТ Р $52931\text{-}2008\,$ выдерживает в течение 1 мин воздействие испытательного напряжения переменного тока практически синусоидальной формы частотой (50 ± 2) Гц, значением:
 - 1500 В в нормальных климатических условиях;
 - 900 В при верхнем значении относительной влажности рабочих условий.
- 2.10 Электрическое сопротивление изоляции электрических цепей ККВ относительно корпуса по ГОСТ Р 52931-2008, не менее:
 - 20 МОм в нормальных климатических условиях;
 - 5 МОм при верхнем значении температуры рабочих условий;
 - 1 МОм при верхнем значении относительной влажности рабочих условий.
- 2.11 ККВ в транспортной таре выдерживают воздействия следующих климатических факторов:
 - температуры от минус 50 до плюс 50 °C;
 - относительной влажности (95 ± 3) % при температуре 35 °C.
- 2.12 ККВ в транспортной таре выдерживают воздействие следующих механикодинамических нагрузок, действующих вдоль трех взаимно перпендикулярных осей тары:
 - вибрации с частотой от 10 до 55 Гц и амплитудой смещения 0,35 мм;
- ударов со значением пикового ударного ускорения 98 м/с 2 , длительностью ударного импульса 16 мс, числом ударов (1000 \pm 10) для каждого направления;
 - ударов при свободном падении с высоты:

```
1000 мм - ККВ-3;
500 мм - ККВ-1;
250 мм - ККВ-2;
100 мм - ККВ-4, ККВ-5.
```

- 2.13 Показатели надежности
- средняя наработка на отказ не менее 100000 ч;
- полный средний срок службы не менее 20 лет;
- критерием отказа считают несоответствие требованию 2.7;
- предельным состоянием ККВ считают необходимость замены корпусных деталей.

3 Состав изделия

В состав изделия входят:

- - комплект монтажных частей в соответствии с таблицей 3.1:

Таблица 3.1

Наименование	Количество на исполнение, шт.					
комплектующих изделий	ККВ-1	KKB-2	ККВ-3	KKB-4	KKB-5	
Болты ГОСТ 7805-70 (DIN 933 8.8 zn):						
M6-6.58.019			4			
M6-12.58.019	4	4				
M16-20.58.019				4	4	
Шайбы ГОСТ 11371-80:						
6.04.019	4	4	4			
16.04.019				4	4	
Шайбы ГОСТ 6402-70:						
6.65Г.019	4	4	4			
16.65Γ.019				4	4	
Кронштейн ЦКЛГ.745212.053	4	4				
Кронштейн ЦКЛГ.745212.054			4			

Эксплуатационные документы:

- - паспорт соответствия техническому регламенту таможенного союза

Примечания:

- 1 При поставке в один адрес партии ККВ допускается прилагать по 1 экз. ЦКЛГ.685631.000 РЭ и ЦКЛГ. 685631.000 ПС ТР на каждые 10 изделий.
- 2 В комплект поставки ККВ могут быть включены дополнительные монтажные элементы, поставляемые фирмой PHOENIX CONTACT для оборудования клемм, по отдельному заказу.

4 Устройство и работа

4.1 Конструкция ККВ-1 показана на рисунке 2.1.

Корпус ККВ-1 состоит из прямоугольного корпуса и крышки, изготовленных из алюминиевого сплава. Крышка крепится к корпусу шестью невыпадающими винтами с резьбой М10 и внутренним шестигранником. По плоскости смыкания корпуса и крышки установлено резиновое уплотнение.

Внутри корпуса расположена DIN-рейка типа NS-35/7,5 для установки клеммных колодок. Номенклатура и количество клемм в наборе определяются при заказе.

На боковых стенках корпуса A и B (толщина стенок не менее 10 мм), параллельных оси DIN-рейки размещены кабельные вводы КВВ. Их тип и количество определяются при заказе. Вместо неиспользуемого кабельного ввода может быть установлена взрывозащищенная заглушка КВВ-3.

Крепежные отверстия М6 расположены на нижней плоскости корпуса. Для монтажа ККВ на объекте в эти крепежные отверстия могут быть установлены монтажные кронштейны ЦКЛГ.745212.053 из комплекта поставки.

На корпусе оболочки имеется заземляющий зажим (М4 - для ККВ-1, ККВ-2, ККВ-3, М8 - для ККВ-4, ККВ-5), отмеченный соответствующим знаком и служащий для наружного заземления.

4.2 Конструкция ККВ-2 показана на рисунках 2.2 и 2.3.

Конструкция корпуса и крышки аналогична ККВ-1 и отличается большими размерами под установку клемм.

Набор клемм можно размещать однорядно вдоль большей оси корпуса (рисунок 2.2) или двухрядно (рисунок 2.3) поперек большей оси корпуса. Номенклатура и количество клемм в наборе определяются при заказе.

На боковых стенках корпуса A, Б, В и Г (толщина стенок не менее 10 мм) размещены кабельные вводы КВВ. Сторона установки, тип и количество кабельных вводов определяются при заказе. Вместо неиспользуемого кабельного ввода может быть установлена взрывозащищенная заглушка КВВ-3.

Крепежные отверстия М6 расположены на нижней плоскости корпуса. Для монтажа ККВ на объекте в эти крепежные отверстия могут быть установлены монтажные кронштейны ЦКЛГ.745212.053 из комплекта поставки.

4.3 Конструкция ККВ-3 показана на рисунке 2.4.

Конструкция корпуса и крышки аналогична ККВ-1 и отличается меньшими

габаритными размерами. Крышка крепится к корпусу четырьмя невыпадающими винтами с резьбой М5 и внутренним шестигранником.

На боковых стенках корпуса А, Б, В и Г (толщина стенок не менее 10 мм) размещены кабельные вводы КВВ. Их тип и количество определяются при заказе. Вместо неиспользуемого кабельного ввода может быть установлена взрывозащищенная заглушка КВВ-3. Максимальная присоединительная резьба кабельных вводов М24х1,5 (диаметр подводимого кабеля не более 16 мм).

Крепежные отверстия М6 расположены на нижней плоскости корпуса. Для монтажа ККВ-3 на объекте в эти крепежные отверстия могут быть установлены монтажные кронштейны ЦКЛГ.745212.054 из комплекта поставки.

4.4 Конструкция ККВ-4 показана на рисунке 2.5.

Корпус ККВ-4 состоит из прямоугольного корпуса увеличенного объема и откидной крышки, изготовленных из алюминиевого сплава. Крышка имеет возможность вращаться относительно корпуса на двух петлях и крепится к корпусу шестнадцатью невыпадающими винтами с резьбой М10 и внутренним шестигранником. По плоскости смыкания корпуса и крышки установлено резиновое уплотнение.

Внутри корпуса может быть расположена монтажная панель, на которую устанавливаются клеммные колодки. Номенклатура и количество клемм в наборе определяются при заказе.

На боковых стенках корпуса A, Б, В и Г (толщина стенок не менее 10 мм) размещены кабельные вводы КВВ. Их тип и количество определяются при заказе. Вместо неиспользуемого кабельного ввода может быть установлена взрывозащищенная заглушка КВВ-3.

Крепежные отверстия М16 расположены на нижней плоскости корпуса.

4.5 Конструкция ККВ-5 показана на рисунке 2.6.

Конструкция корпуса и крышки аналогична ККВ-4 и отличается меньшими габаритными размерами.

Крышка крепится четырнадцатью невыпадающими винтами с резьбой М10 и внутренним шестигранником и открывается односторонним вращением на петлях.

Внутри корпуса имеется возможность размещения DIN-рейки типа NS-35/7,5 или монтажной панели для установки клеммных колодок. Номенклатура и количество клемм в наборе определяются при заказе.

На боковых стенках корпуса A, Б, В и Г (толщина стенок не менее 10 мм) размещены кабельные вводы КВВ. Их тип и количество определяются при заказе.

Вместо неиспользуемого кабельного ввода может быть установлена взрывозащищенная заглушка КВВ-3.

Крепежные отверстия М16 расположены на нижней плоскости корпуса.

- 4.6 Конструкции кабельных вводов, устанавливаемых в ККВ, описаны ниже.
- 4.6.1 Конструкция кабельного ввода КВВ-1-1, предназначенного для монтажа кабеля в трубе показана на рисунке 4.1.

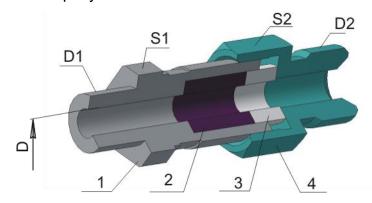


Рисунок 4.1 - Конструкция кабельного ввода для монтажа кабеля в трубе

Кабельный ввод состоит из корпуса 1 с присоединительной резьбой D1, размер под ключ S1. В проточке корпуса устанавливается резиновый сальник 2, внутренний размер которого обеспечивает уплотнение кабеля в заданном диапазоне диаметров различных применяемых кабелей. Необходимая степень уплотнения обеспечивается поджатием сальника 2 сухарем 3 при помощи фитинга 4. Фитинг 4 снабжен внешней трубной резьбой D2, размер под ключ S2. На корпусе крепится фирменная планка с необходимой информацией двумя заклепками.

4.6.2 Конструкция кабельного ввода КВВ-2-1, предназначенного для монтажа бронированного кабеля показана на рисунке 4.2.

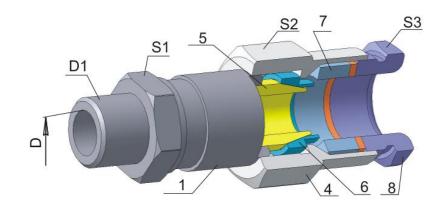


Рисунок 4.2 - Конструкция кабельного ввода для монтажа бронированного кабеля

Кабельный ввод для монтажа бронированного кабеля отличается от ввода для трубного монтажа (рисунок 4.1) следующим:

- сухарь 5 выполнен с конической поверхностью для раскладки по ней проволочной или ленточной брони, которая зажимается конической втулкой 6;
 - уплотнение сальника 2 (рисунок 4.1) осуществляется навинчиванием фитинга 4;
- дополнительное уплотнение кабеля по внешней оболочке осуществляется сальником 7 и гайкой 8 с размером под ключ S3.
- 4.6.3 Конструкция кабельного ввода КВВ-3-1, предназначенного для монтажа кабеля в металлорукаве показана на рисунке 4.3.

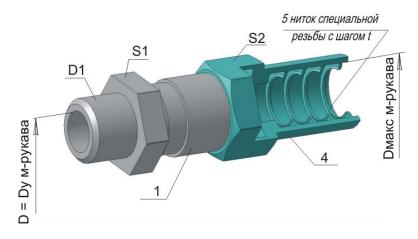


Рисунок 4.3 - Конструкция кабельного ввода для монтажа кабеля в металлорукаве

Кабельный ввод для монтажа кабеля в металлорукаве отличается от ввода для трубного монтажа (рисунок 4.1) тем, что фитинг 4 снабжен внутренней специальной резьбой для вворачивания металлорукава типа Р3.

4.6.4 Конструкция кабельного ввода КВВ-4-1, предназначенного для монтажа кабеля без дополнительной защиты показана на рисунке 4.4.

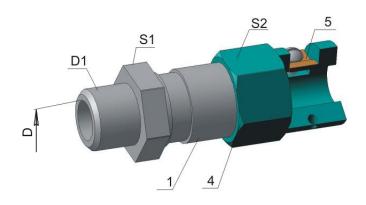



Рисунок 4.4 - Конструкция кабельного ввода для монтажа кабеля без дополнительной защиты

Кабельный ввод для монтажа кабеля без дополнительной защиты отличается от ввода для трубного монтажа (рисунок 4.1) тем, что фитинг 4 снабжен фиксирующим хомутом 5.

4.6.5 Конструкция кабельного ввода КВВ-5-1, предназначенного для монтажа кабеля в металлорукаве с ПВХ оболочкой показана на рисунке 4.5.

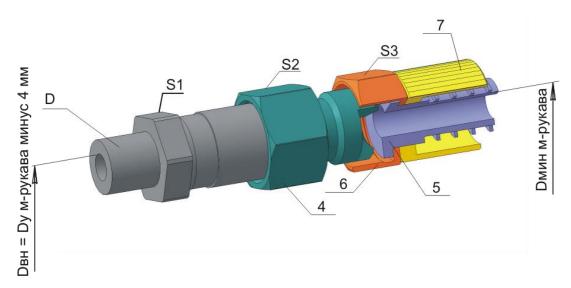


Рисунок 4.5 - Конструкция кабельного ввода для монтажа кабеля в металлорукаве с ПВХ оболочкой

Кабельный ввод для монтажа кабеля в металлорукаве с ПВХ оболочкой отличается от ввода для трубного монтажа (рисунок 4.1) тем, что фитинг 4 дополнен штуцером 5 с наружной специальной резьбой для наворачивания металлорукава типа РЗ-ЦП по ТУ 4833-009-00239971-2005 или металлорукава типа МПГ по ТУ 4833-024-01877509-2002 или подобных им по конструкции. Крепление штуцера 5 к фитингу 4 осуществляется накидной гайкой 6. Внешняя ПВХ оболочка металлорукава зажимается во втулке 7 при накручивании последнего на штуцер 5.

5 ОБЕСПЕЧЕНИЕ ВЗРЫВОЗАЩИЩЕННОСТИ

Взрывозащищенное исполнение ККВ обеспечивается выполнением требований ГОСТ 31610.0-2019 (IEC 60079-0:2017) и видом взрывозащиты "взрывонепроницаемая оболочка" по ГОСТ IEC 60079-1-2011 за счет применения следующих конструктивных решений:

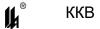
- заключения всех токоведущих частей установленного электрооборудования в корпус взрывозащищенный универсальный КВУ-05, выполненный с видом взрывозащиты «взрывонепроницаемая оболочка» и маркировкой Ex d IIB U, способный выдержать давление взрыва и исключить передачу взрыва в окружающую взрывоопасную среду по ГОСТ IEC 60079-1-2011;
- применения сертифицированных взрывозащищенных кабельных вводов с видом взрывозащиты "взрывонепроницаемая оболочка" и маркировкой взрывозащиты 1Ex d IIC Gb;
- герметичной установки кабельных вводов согласно требованиям ГОСТ IEC 60079-1-2011;
- предохранения от самоотвинчивания всех винтов, крепящих детали, обеспечивающих взрывозащиту ККВ, а также заземляющих зажимов с помощью пружинных шайб, упругих элементов или контргаек по ГОСТ IEC 60079-1-2011;
- защиты от коррозии консистентной смазкой всех поверхностей, обозначенных словом "B3PЫВ" по ГОСТ IEC 60079-1-2011;
- ограничения температуры нагрева корпуса величиной не выше 130 °C, что удовлетворяет требованиям ГОСТ 31610.0-2019 (IEC 60079-0:2017) для температурного класса Т4.

6 Указание мер безопасности

- 6.1 К работе по монтажу и обслуживанию при эксплуатации ККВ должны допускаться лица, обученные правилам по технике безопасности при работе с электрическими приборами.
- 6.2 По способу защиты человека от поражения электрическим током ККВ соответствуют классу I по ГОСТ 12.2.007.0-75.
- 6.3 Монтаж ККВ и подвод кабеля к ним во взрывоопасных зонах помещений и наружных установок должны производиться согласно маркировке взрывозащиты, настоящим ЦКЛГ.685631.000 РЭ, в строгом соответствии с нормативными документами, регламентирующими применение электрооборудования во взрывоопасных зонах.
- 6.4 Запрещается открывать крышку ККВ во взрывоопасной зоне, не обесточив подводимые кабели.

7 Монтаж и подготовка к работе. Обеспечение взрывозащищенности при монтаже и эксплуатации

- 7.1 Диаметр монтируемого кабеля должен быть в пределах величин, промаркированных на корпусе кабельного ввода, сечение жил кабеля должно соответствовать значениям, указанным в таблице 2.5.
- 7.2 Последовательность монтажа кабеля в зависимости от конструкции кабельного ввода КВВ:
 - 7.2.1 Кабельный ввод для монтажа кабеля в трубе КВВ-1 (см. рисунок 4.1):
 - продеть свободный конец кабеля через фитинг 4, сухарь 3, сальник 2;
 - ввести кабель в корпус электрооборудования и выполнить электромонтаж;
- установить сальник 2 в корпус 1 и затянуть фитинг 4 до упора сухарь 3 должен быть полностью утоплен в проточке корпуса 1 (момент затяжки должен быть не менее 20 Нм);
 - кабель не должен выдергиваться или проворачиваться в узле уплотнения;
 - произвести монтаж трубы при помощи муфты.
- 7.2.2 Кабельный ввод для монтажа бронированного кабеля КВВ-2 (см. рисунок 4.2, 4.1):
 - продеть свободный конец кабеля через гайку 8, сальник 7, фитинг 4, втулку 6;
 - произвести разделку брони кабеля на необходимой для монтажа длине;
 - на оболочку кабеля без брони надеть сухарь 5 и сальник 2;
 - ввести кабель в корпус электрооборудования и выполнить электромонтаж;
- установить сальник 2 и сухарь 5 в корпус 1, разложить броню по конической поверхности сухаря 5 и зажать конусной втулкой 6, уплотнить сальник 2 вворачиванием до упора фитинга 4 (момент затяжки должен быть не менее 20 Нм), втулка 6 должна упереться в корпус 1;
 - кабель не должен выдергиваться или проворачиваться в узле уплотнения;
- установить сальник 7 в фитинг 4 и произвести уплотнение сальника по внешней оболочке кабеля затягиванием гайки 8.
- 7.2.3 Кабельный ввод для монтажа кабеля в металлорукаве КВВ-3 (см. рисунок 4.3, 4.1):
 - продеть свободный конец кабеля через фитинг 4, сухарь 3, сальник 2;
 - ввести кабель в корпус электрооборудования и выполнить электромонтаж;



- установить сальник 2 в корпус 1 и затянуть фитинг 4 до упора сухарь 3 должен быть полностью утоплен в проточке корпуса 1 (момент затяжки должен быть не менее 20 Нм);
 - кабель не должен выдергиваться или проворачиваться в узле уплотнения;
 - ввернуть свободный конец металлорукава в резьбовую часть фитинга 4;
- стопорить металлорукав в специальной резьбе фитинга герметиком Унигерм-7 ТУ 2257-406-00208947-2004 или краской на основе шпатлевки ЭП-00-10 ГОСТ 10277-90 или эпоксидной смолы ЭД-20 ГОСТ 10587-84.
- 7.2.4 Кабельный ввод для монтажа кабеля без защитной оболочки КВВ-4 (см. рисунок 4.4, 4.1):
- продеть свободный конец кабеля через фитинг 4 в сборе с хомутом 5, сухарь 3, сальник 2;
 - ввести кабель в корпус электрооборудования и выполнить электромонтаж;
- установить сальник 2 в корпус 1 и затянуть фитинг 4 до упора сухарь 3 должен быть полностью утоплен в проточке корпуса 1 (момент затяжки должен быть не менее 20 Нм);
 - кабель не должен выдергиваться или проворачиваться в узле уплотнения;
- затянуть хомут на оболочке кабеля, момент затяжки крепежных винтов: М3 - 1,2 Нм, М4 - 2,9 Нм.
- 7.2.5 Кабельный ввод для монтажа кабеля в металлорукаве с ПВХ оболочкой (см. рисунок 4.5, 4.1):
- продеть свободный конец кабеля через фитинг 4, сухарь 3, сальник 2, штуцер 5, гайку 6 и втулку 7;
 - ввести кабель в корпус электрооборудования и выполнить электромонтаж;
- установить сальник 2 в корпус 1 и затянуть фитинг 4 до упора сухарь 3 должен быть полностью утоплен в проточке корпуса 1 (момент затяжки должен быть не менее 20 Нм);
 - кабель не должен выдергиваться или проворачиваться в узле уплотнения;
 - закрепить штуцер 5 на фитинге 4 накидной гайкой 6;
 - надеть втулку 7 на штуцер 5;
- навернуть металлорукав на штуцер 5, внешняя ПВХ оболочка металлорукава должна быть зажата во втулке 7;
- стопорить металлорукав в специальной резьбе фитинга герметиком Унигерм-7 ТУ 2257-406-00208947-2004 или краской на основе шпатлевки ЭП-00-10 ГОСТ 10277-90 или эпоксидной смолы ЭД-20 ГОСТ 10587-84.

- 7.3 Плоскость разъема корпуса и крышки ККВ должна быть защищена от коррозии нанесением тонкого слоя консистентной смазки.
- 7.4 При эксплуатации ККВ должны подвергаться ежемесячному внешнему осмотру, при котором необходимо проверять:
- целостность внешней оболочки корпуса, отсутствие вмятин, коррозии и других повреждений;
 - наличие всех крепежных деталей и элементов;
 - наличие маркировки взрывозащиты;
 - состояние уплотнения кабеля в узле кабельного ввода.

Эксплуатировать ККВ с поврежденными деталями и другими неисправностями категорически запрещается.

8 Маркировка

- 8.1 Маркировка ККВ соответствует ГОСТ 26828-86.
- 8.2 На корпусе ККВ в местах, оговоренных конструкторской документацией, нанесены следующие надписи:
 - наименование изготовителя или его зарегистрированный товарный знак;
 - наименование изделия;
 - порядковый номер изделия и год выпуска;
 - наименование органа по сертификации;
 - номер сертификата соответствия;
 - маркировка взрывозащиты;
 - надпись "ОТКРЫВАТЬ, ОТКЛЮЧИВ ОТ СЕТИ";
 - диапазон рабочих температур;
- маркировка степени защиты, обеспечиваемая оболочкой, IP66 по
 ГОСТ 14254-2015;
 - специальный знак Ех взрывобезопасности (Приложение 2 к ТР ТС 012/2011);
- единый знак EAC обращения продукции на рынке государств-членов Таможенного союза.
 - 8.3 Способ выполнения маркировки "металлофото".
- 8.4 Маркировка выполнена хорошо видимой, четкой, механически прочной, устойчивой в течение всего срока службы ККВ.
- 8.5 Маркировка транспортной тары выполнена в соответствии с требованиями ГОСТ 14192-96.

9 Тара и упаковка

- 9.1 Упаковку производят в соответствии с требованиями ГОСТ 23170-78. Категория упаковки КУ-2.
- 9.2 Эксплуатационные документы упаковывают отдельно в пакеты из полиэтиленовой пленки марки М по ГОСТ 10354-82 толщиной 0,2 мм. Все швы пакетов заваривают.
- 9.3 ККВ и эксплуатационные документы укладывают в ящики типа I по ГОСТ 5959-80 из древесноволокнистой плиты.
- 9.4 ККВ следует упаковывать в закрытых вентилируемых помещениях при температуре окружающего воздуха от 15 до 40 °C и относительной влажности до 80 % при отсутствии в окружающей среде агрессивных примесей.

10 ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ

10.1 ККВ в упаковке хранятся на складах изготовителя и потребителя в условиях 2 (С) ГОСТ 15150-69.

Срок хранения ККВ до ввода в эксплуатацию – не более 3 лет с момента изготовления.

- 10.2 При хранении ККВ на складах изготовителя и потребителя в воздухе не должно быть паров и газов, разрушающе действующих на металлические детали и резину.
- 10.3 ККВ в упаковке предприятия-изготовителя могут транспортироваться в крытых железнодорожных вагонах, универсальных контейнерах и закрытых автомашинах при условии хранения 5 (ОЖ4) ГОСТ 15150-69 и в соответствии с правилами перевозок грузов соответствующих транспортных ведомств.

ПРИЛОЖЕНИЕ А

Габаритно-монтажные чертежи исполнений ККВ

Таблица А.1

Обозначение	Шифр	Свободный	Установочные размеры, мм			
исполнения	исполнения	объем, V, см ³	С	D	крепежных отверстий	
ЦКЛГ.685631.000	ККВ-1	1042	159	157	M6×12	
ЦКЛГ.685631.000-01	KKB-2	1883	160	259	M6×12	
ЦКЛГ.685631.000-02	ККВ-3	471	86	110	M6×6	
ЦКЛГ.685631.000-03	ККВ-4	24038	300	300	M16×20	
ЦКЛГ.685631.000-04	KKB-5	9647	225	225	M16×20	

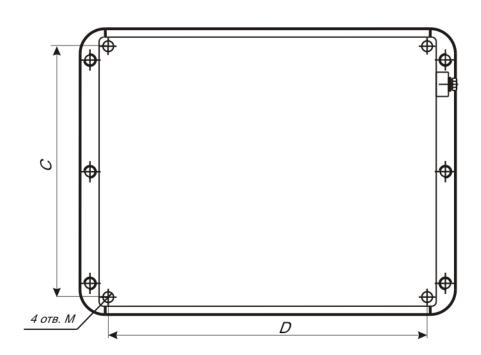


Рисунок А.1 - Установочные размеры ККВ. Вид на коробку снизу

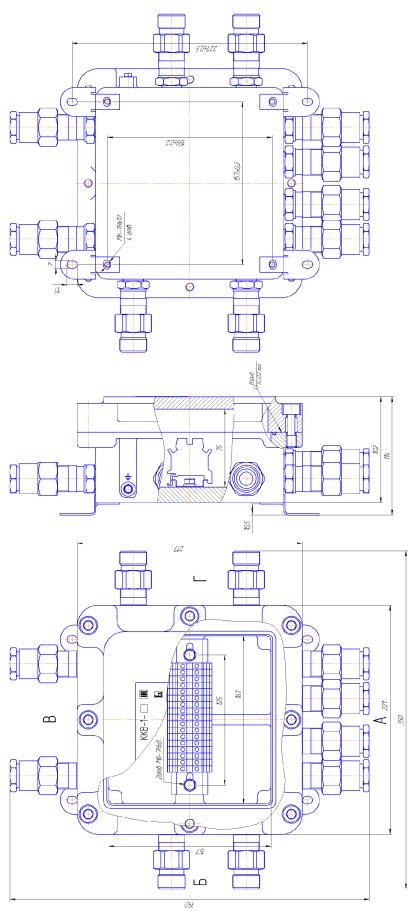


Рисунок А.2 - Габаритно-монтажный чертеж ККВ-1

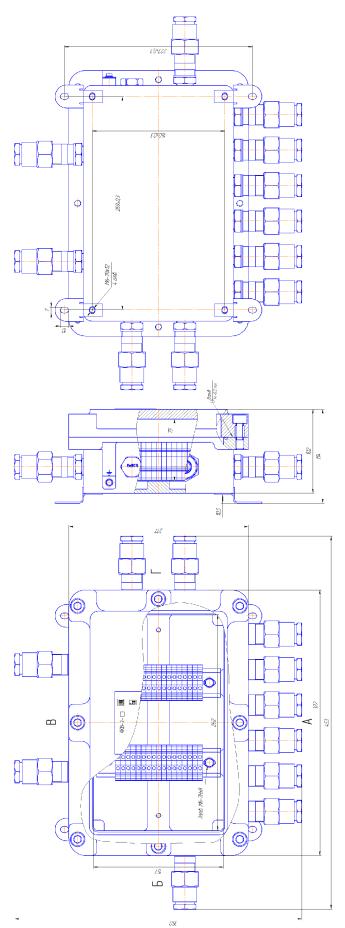
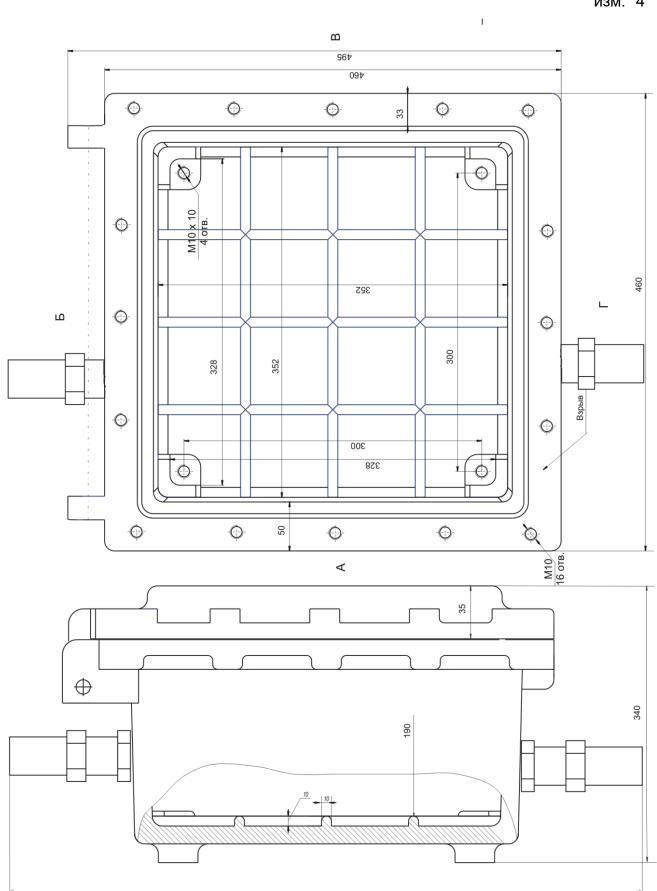



Рисунок А.3 - Габаритно-монтажный чертеж ККВ-2

Рисунок А.4 - Габаритно-монтажный чертеж ККВ-3

ККВ

Рисунок А.5 - Габаритно-монтажный чертеж ККВ-4

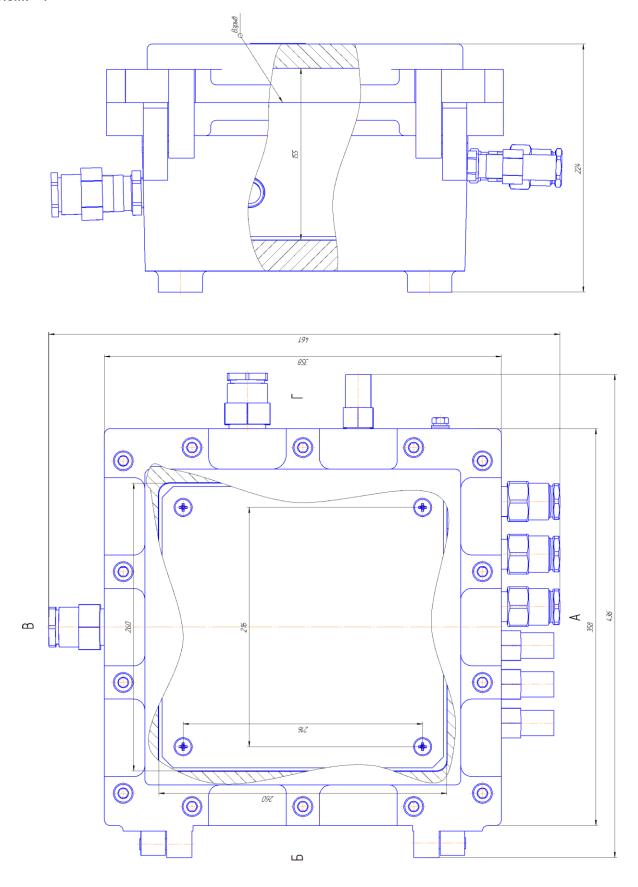


Рисунок А.6 - Габаритно-монтажный чертеж ККВ-5